Join the #1 Looksmaxxing Community!

Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

  • DISCLAIMER: DO NOT ATTEMPT TREATMENT WITHOUT LICENCED MEDICAL CONSULTATION AND SUPERVISION

    This is a public discussion forum. The owners, staff, and users of this website ARE NOT engaged in rendering professional services to the individual reader. DO NOT use the content of this website as an alternative to personal examination and advice from licenced healthcare providers. DO NOT begin, delay, or discontinue treatments and/or exercises without licenced medical supervision. Learn more

Guide NO BULLSHIT GUIDE ON MELATONIN {+ALL LOOKSMAXXING BENEFITS}

King

Well-known member
Joined
Mar 23, 2021
Messages
304
Reputation
195
FIRSTLY NO MELATONIN DOESN'T CAUSE SUPPRESSION


MELATONIN AND SLEEP
MELATONIN MAKES YOU SLEEP LIKE A KID, BUT IF YOU TAKE SUDDEN RELEASE THEN YOU MAY WAKE UP AFTER A FEW HOURS
I'M NOT WASTING MY TIME ON EXPLAINING THE BENEFITS OF GOOD NIGHT SLEEP


MELATONIN AND BRAIN

A. Melatonin has neurotrophic effects. It co-localizes with the expression of BDNF and GDNF in some cells[20][21] and to stimulate their expression in stem cells, allowing them to diversify into mature cells[22].

B. For a review of melatonin’s neuroprotective character, see this citation[23].

C. There is much evidence for melatonin being particularly neuroprotective against the pathology of Parkinson’s disease[24].

D. Melatonin is being investigated for the treatment of Alzheimer’s disease [25]

E. Melatonin appears particularly useful for alleviating methamphetamine toxicity[26]. It may do the same for alcohol[27] (not just in the brain[28]).



MELATONIN AND AGING


A. Pharmacologic melatonin may improve aging[29].

B. Melatonin delays senescence[30].

C. Melatonin modulates sirtuin activity[31][32][33].


MELATONIN AND BLOOD PRESSURE

A. A meta-analysis of 5 controlled trials found that supplemental melatonin significantly reduced systolic and diastolic blood pressure[34]. This falls in line with theoretical evidence for melatonin and angiotensin modulating each other[35].

MELATONIN AND LIPIDS

A. A meta-analysis of 8 randomized controlled trials found that melatonin supplementation produced a large and significant reduction in serum triglycerides and a significant reduction in total serum cholesterol[36].


MELATONIN AND THE IMMUNE SYSTEM

A. Melatonin is immunomodulatory. It is synthesized by lymphocytes and the thymus. It stimulates natural killer cells and governs the release of T-helper 1 cells, B lymphocytes, and cytokine release[37].

B. In a randomized, double-blind, controlled study, 6 mg of melatonin reduced the TNF-alpha, interleukin-6, and C-reactive protein of obese women, indication a reduction in inflammation and oxidative stress[38].



MELATONIN AND CANCER

A. Melatonin is known to inhibit cancer development[39] and cancer metastasis[40].

B. Melatonin selectively triggers apoptosis in a variety of cancer cells[41].

C. Melatonin has been shown to inhibit breast cancer development, and it is thought that the reason night shift workers develop breast cancers more frequently is due to reduced melatonin synthesis[42].

D. Melatonin produces an anti-angiogenic effect by inhibits VEGF in liver cancer cells[43].


MELATONIN, INSULIN RESISTANCE, DIABETES, OBESITY, AND NAFLD

A. Melatonin regulates insulin sensitivity, producing insulin sensitivity early in the day and inducing insulin resistance when it is transmitted in the latter day[44]. It also influences GLUT4 expression, lipolysis, lipogenesis, fatty acid uptake, pancreatic islet function, and modulates IGF-1 activity.

B. A randomized, double-blind controlled trial found that 6 mg of melatonin significantly but minorly improved HbA1c, fasting blood glucose, and HDL-cholesterol among type 2 diabetics[45].

C. A randomized, double-blind controlled trial found that 10 mg of melatonin significantly improved insulin sensitivity, HDL-cholesterol, systolic and diastolic blood pressure, C-reactive protein, and metrics of oxidative stress among type 2 diabetics with coronary heart disease[46].

D. In a randomized, controlled trial, 10 mg of melatonin improved body weight reduction, antioxidant defense, and adipokine (cytokines released from adipose tissue, like leptin) secretion among obese dieters[47].

E. In a double-blind, controlled, crossover study, 8 mg of melatonin significantly improved some metrics of the metabolic syndrome[48].

F. Melatonin is particularly attractive for nonalcoholic fatty liver disease[49] and liver injury[50][51]. In a randomized, controlled trial, 10 mg of melatonin improved liver grade and C-reactive protein among sufferers of nonalcoholic fatty liver disease[52].



ALSO SOME PEOPLE MAY NOT EXPERIENCE ANYTHING FROM IT-
It is believed that a loss of response to melatonin supplementation is due to slow metabolism, particularly, to reduced activity of the CYP1A2 enzyme (found in 12-14% of people)[67].





A CONCERN-
H. Intuitively, twice a day dosing appears to damage sex hormone production by interfering with gonadotropin releasing hormone[66].



OF COURSE MOST OF IT IS A COPYPASTA, BUT YEA IT IS WHAT IT IS
@Rkelly @Neo @Buddy Boyo @pizza-san @Rei @Pururin @Pendejo @john @BouncyFunction @BrettyBoy @Ritalincel

[20] Niles, L. P., Armstrong, K. J., Castro, L. M. R., Dao, C. V., Sharma, R., McMillan, C. R., ... & Kirkham, D. L. (2004). Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT 1 receptor with neuronal and glial markers. BMC neuroscience, 5(1), 1-9. [21] Rincón Castro, L. M., Gallant, M., & Niles, L. P. (2005). Novel targets for valproic acid: up‐regulation of melatonin receptors and neurotrophic factors in C6 glioma cells. Journal of neurochemistry, 95(5), 1227-1236. [22] Kong, X., Li, X., Cai, Z., Yang, N., Liu, Y., Shu, J., ... & Zuo, P. (2008). Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cellular and molecular neurobiology, 28(4), 569-579. [23] Alghamdi, B. S. (2018). The neuroprotective role of melatonin in neurological disorders. Journal of neuroscience research, 96(7), 1136-1149. [24] Srinivasan, V., Cardinali, D. P., Srinivasan, U. S., Kaur, C., Brown, G. M., Spence, D. W., ... & Pandi-Perumal, S. R. (2011). Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Therapeutic advances in neurological disorders, 4(5), 297-317. [25] Shukla, M., Govitrapong, P., Boontem, P., Reiter, R. J., & Satayavivad, J. (2017). Mechanisms of melatonin in alleviating Alzheimer's disease. Current neuropharmacology, 15(7), 1010-1031. [26] Nopparat, C., Porter, J. E., Ebadi, M., & Govitrapong, P. (2010). The mechanism for the neuroprotective effect of melatonin against methamphetamine‐induced autophagy. Journal of pineal research, 49(4), 382-389. [27] Al Kury, L. T., Zeb, A., Abidin, Z. U., Irshad, N., Malik, I., Alvi, A. M., ... & Shah, F. A. (2019). Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Design, Development and Therapy, 13, 2715. [28] Mishra, A., Paul, S., & Swarnakar, S. (2011). Downregulation of matrix metalloproteinase-9 by melatonin during prevention of alcohol-induced liver injury in mice. Biochimie, 93(5), 854-866. [29] Poeggeler, B. (2005). Melatonin, aging, and age-related diseases. Endocrine, 27(2), 201-212. [30] Wang, P., Yin, L., Liang, D., Li, C., Ma, F., & Yue, Z. (2012). Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. Journal of pineal research, 53(1), 11-20. [31] Mayo, J. C., Sainz, R. M., Gonzalez Menendez, P., Cepas, V., Tan, D. X., & Reiter, R. J. (2017). Melatonin and sirtuins: a “not‐so unexpected” relationship. Journal of pineal research, 62(2), e12391. [32] Cristòfol, R., Porquet, D., Corpas, R., Coto‐Montes, A., Serret, J., Camins, A., ... & Sanfeliu, C. (2012). Neurons from senescence‐accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. Journal of pineal research, 52(3), 271-281. [33] Dezfouli, M. A., Zahmatkesh, M., Farahmandfar, M., & Khodagholi, F. (2019). Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway. Physiology & behavior, 204, 65-75. [34] Hadi, A., Ghaedi, E., Moradi, S., Pourmasoumi, M., Ghavami, A., & Kafeshani, M. (2019). Effects of melatonin supplementation on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Hormone and Metabolic Research, 51(03), 157-164. [35] Campos, L. A., Cipolla-Neto, J., Amaral, F. G., Michelini, L. C., Bader, M., & Baltatu, O. C. (2013). The angiotensin-melatonin axis. International Journal of Hypertension, 2013. [36] Mohammadi-Sartang, M., Ghorbani, M., & Mazloom, Z. (2018). Effects of melatonin supplementation on blood lipid concentrations: a systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition, 37(6), 1943-1954. [37] Mohamed, M., Srinivasan, V., Maestroni, G., Rosenstein, R. E., & Oter, S. (2014). Melatonin and immune function: clinical significance. In Melatonin and Melatonergic Drugs in Clinical Practice (pp. 143-157). Springer, New Delhi. [38] Alamdari, N. M., Mahdavi, R., Roshanravan, N., Yaghin, N. L., Ostadrahimi, A. R., & Faramarzi, E. (2015). A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women. Hormone and Metabolic Research, 47(07), 504-508. [39] Reiter, R. J., Rosales-Corral, S. A., Tan, D. X., Acuna-Castroviejo, D., Qin, L., Yang, S. F., & Xu, K. (2017). Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. International journal of molecular sciences, 18(4), 843. [40] Su, S. C., Hsieh, M. J., Yang, W. E., Chung, W. H., Reiter, R. J., & Yang, S. F. (2017). Cancer metastasis: Mechanisms of inhibition by melatonin. Journal of pineal research, 62(1), e12370. [41] Bizzarri, M., Proietti, S., Cucina, A., & Reiter, R. J. (2013). Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert opinion on therapeutic targets, 17(12), 1483-1496. [42] Hill, S. M., Belancio, V. P., Dauchy, R. T., Xiang, S., Brimer, S., Mao, L., ... & Frasch, T. (2015). Melatonin: an inhibitor of breast cancer. Endocrine-related cancer, 22(3), R183-R204. [43] Carbajo-Pescador, S., Ordoñez, R., Benet, M., Jover, R., García-Palomo, A., Mauriz, J. L., & González-Gallego, J. (2013). Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. British journal of cancer, 109(1), 83-91. [44] Cipolla‐Neto, J., Amaral, F. G., Afeche, S. C., Tan, D. X., & Reiter, R. J. (2014). Melatonin, energy metabolism, and obesity: a review. Journal of pineal research, 56(4), 371-381. [45] Rezvanfar, M. R., Heshmati, G., Chehrei, A., Haghverdi, F., Rafiee, F., & Rezvanfar, F. (2017). Effect of bedtime melatonin consumption on diabetes control and lipid profile. International Journal of Diabetes in Developing Countries, 37(1), 74-77. [46] Raygan F, Ostadmohammadi V, Bahmani F et al. Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial [47] Szewczyk-Golec, K., Rajewski, P., Gackowski, M., Mila-Kierzenkowska, C., Wesołowski, R., Sutkowy, P., ... & Woźniak, A. (2017). Melatonin supplementation lowers oxidative stress and regulates adipokines in obese patients on a calorie-restricted diet. Oxidative medicine and cellular longevity, 2017. [48] Goyal, A., Terry, P. D., Superak, H. M., Nell-Dybdahl, C. L., Chowdhury, R., Phillips, L. S., & Kutner, M. H. (2014). Melatonin supplementation to treat the metabolic syndrome: a randomized controlled trial. Diabetology & metabolic syndrome, 6(1), 124. [49] Zhou, H., Du, W., Li, Y. E., Shi, C., Hu, N., Ma, S., ... & Ren, J. (2018). Effects of melatonin on fatty liver disease: The role of NR 4A1/DNA‐PK cs/p53 pathway, mitochondrial fission, and mitophagy. Journal of Pineal Research, 64(1), e12450. [50] Zhang, J. J., Meng, X., Li, Y., Zhou, Y., Xu, D. P., Li, S., & Li, H. B. (2017). Effects of melatonin on liver injuries and diseases. International Journal of Molecular Sciences, 18(4), 673. [51] Mortezaee, K., & Khanlarkhani, N. (2018). Melatonin application in targeting oxidative‐induced liver injuries: A review. Journal of Cellular Physiology, 233(5), 4015-4032. [52] Pakravan, H., Ahmadian, M., Fani, A., Aghaee, D., Brumanad, S., & Pakzad, B. (2017). The effects of melatonin in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Advanced biomedical research, 6.
[66] Amano, M., Iigo, M., Ikuta, K., Kitamura, S., Okuzawa, K., Yamada, H., & Yamamori, K. (2004). Disturbance of plasma melatonin profile by high dose melatonin administration inhibits testicular maturation of precocious male masu salmon. Zoological science, 21(1), 79-85. [67] Braam, W., Van Geijlswijk, I., Keijzer, H., Smits, M. G., Didden, R., & Curfs, L. M. (2010). Loss of response to melatonin treatment is associated with slow melatonin metabolism. Journal of Intellectual Disability Research, 54(6), 547-555
 

Back
Top