Mega(x, y, z, w) = integral from 0 to infinity of (e^(-t^2) * t^(x-1) * Gamma(1 + sqrt(t^2 + x^2 + y^2 + w^2)) * Li2(sin(t*x*y*w)) * BesselJ(0, z*t) * erf(t*w)) dt
+ det([[cos(x), sin

, exp(z)], [-sin(x), cos

, log(1+z^2)], [sqrt(x^2+y^2), tanh(z), factorial(floor(x+y+z+w))]])
+ trace([[x^2, y*z, w], [z*x, y^2, sin(w)], [tanh(x), cosh

, z^3]]^4) * integral from 0 to pi of (tan(t)^(x*y/2) * sech(t*z) * csc(t*w) dt)
+ sum from n=1 to infinity of ((-1)^n * zeta(n + x*y + w^2) / (n! * (n+x+z+w)^(1/3))) * cosh(n*x) * sin(n*y) * tanh(n*z)
+ limit as n->infinity of sum from k=1 to n of ((-1)^k * zeta(k + x*y + z^2 + w^3) / (k^x + k^y + k^z + k^w)^(1/4) * exp(i*k*(x+y+z+w)))
+ tensor([[x, y, z, w], [x^2, y^2, z^2, w^2], [sin(x), cos

, tanh(z), sech(w)], [x*y, y*z, z*w, w*x]])^(sin(x*y*z*w))
+ integral from -pi to pi of (product from j=1 to 4 of cos(t*j*(x+y+z+w))) dt
+ sum from m=0 to infinity of ((-1)^m * factorial(m + floor(x+y+z+w)) / (m+1)^(x*y*z*w)) * BesselY(m, x+y+z+w)
+ det([[Li2(x), Li3

, Li4(z), Li5(w)], [log(1+x), log(1+y), log(1+z), log(1+w)], [sqrt(x), sqrt

, sqrt(z), sqrt(w)], [cosh(x), sinh

, tanh(z), sech(w)]])
+ trace([[x+y, z+w, x*z], [y*w, x+z, y+z], [w*x, z*y, x^2+y^2+z^2+w^2]])